
Introduction to 
Unified Modeling Language (UML)

NCICB Software Development Processes                
Facilitating Systems Interoperability

Sashi Thangaraj (SAIC)



2

Agenda

Introduction

What is UML?

Benefits of UML

UML Artifacts

Tools

Case Study - caBIO

Q&A



3

As the world becomes more complex, the computer-based
systems that inhabit the world must also increase in complexity.
These systems often involve multiple components: 

Hardware
Software
Networked across great distances
Databases

Qn. If you want to make systems that deal with real world 
problems, how do you get your hands around real world 
complexities?

Ans. The key is to organize the design process in a way that
clients, analysts, programmers and others involved in system
development can understand and agree on.  UML is key in 
providing this organization

Introduction



4

The Unified Modeling Language (UML) is a general-purpose 
visual modeling language that is used to specify, visualize, 
construct, and document the artifacts of a software system

UML was released in 1997 as a method to diagram software 
design and was designed by a consortium of the best minds in 
object-oriented analysis and design 

UML is by far the most exciting thing to happen to the software 
industry in recent years as every other engineering discipline 
has a standard method of documentation

Electronic engineers have schematic diagrams
Architects and mechanical engineers have blueprints and 
mechanical diagrams 
The software industry now has UML!

What is UML?



5

Software systems are professionally designed and documented 
before they are coded so that all stakeholders know exactly 
what they are getting, in advance  

Since system design comes first, UML enables re-usable code 
to be easily identified and coded with the highest efficiency, thus 
reducing software development costs

UML enables logic 'holes' to be spotted in design drawings so 
that software will behave as expected  

The overall system design described in UML will dictate the way 
the software is developed so that the right decisions are made 
early on in the process.  Again, this reduces software 
development costs by eliminating  re-work in all areas of the life 
cycle.  

Benefits of UML



6

More Benefits…

UML provides an enterprise level view of the system and, as a 
result, more memory and processor efficient systems can be 
designed

UML enables ease of maintenance by providing more effective 
visual representations of the system.  Consequently, 
maintenance costs are reduced.

UML diagrams assist in providing efficient training to new 
members of the development team member 

UML provides a vehicle of communication with both internal and 
external stakeholders as it documents the system much more 
efficiently



7

The following are the most commonly used UML artifacts:

Use Case Diagrams 

Class Diagrams 

Sequence Diagrams 

Collaboration Diagrams 

Activity Diagrams 

Component Diagrams 

Deployment Diagrams 

UML Artifacts



8

Use Cases

An ellipse represents a use case and a “stick figure” represents an 
actor operating within the use case

An actor can be a user, system, or other entity

The initiating actor appears on the left of the use case, and the 
receiving actor appears on the right 

The actor is identified by a name below the “stick figure”

The name of the use case appears either inside or below the ellipse

An association line is a line that connects an actor to the use case, and 
represents communication between the actor and the use case

The association line is solid, similar to the line that connects associated 
classes



9

Class Diagrams

The rectangle represents the class. The name of the class by 
convention begins with an initial uppercase letter

A one-word attribute name is written in lowercase

An operation name is also written in lowercase



10

Class Diagrams - continued…

Associations 
When classes are connected together conceptually, that connection 
is called an association
Multiplicity is a special type of association which shows the number 
of objects from one class that relate to a number of objects in an 
associated class. One class can be related to another in the following 
ways:

one-to-one 

one-to-many 

one-to-one or more 

one-to-zero or one 

one-to-a bounded interval (one-to-two through twenty) 

one-to-exactly n 

one-to-a set of choices (one-to-five or eight) 



11

Class Diagrams - continued…

Inheritance

One class (the child class or subclass) can inherit attributes and 
operations from another (the parent class or superclass). The 
parent class is more general then the child class. 

Generalization

In generalization, a child is substitutable for a parent. That is, 
anywhere the parent appears, the child may appear. The 
reverse isn't true, however.



12

Sequence Diagrams

Generic sequence diagrams often provide opportunities to represent if 
statements and while loops

Each condition for an if statement is enclosed in square brackets 

The condition that satisfies a while loop is also enclosed in square brackets 
and the left bracket is prefixed with an asterisk



13

Component Diagrams

A component diagram contains components, interfaces and 
relationships

The component diagram's main icon is a rectangle that has two 
rectangles overlaid on its left side.  The component name 
appears inside the icon.  If the component is a member of a 
package, you can prefix the component's name with the name of 
the package.



14

There are a variety of tools that are used to analyze, 
design, implement, and maintain systems that are 
designed using UML including:

Design Tools 

Implementation Tools

Interactive Development Environments (IDEs)

Tools



15

Design Tools

A variety of Computer Aided Software Engineering 
(CASE) tools that conform to modeling language 
standards such as UML are available

Enterprise Architect (EA) is a popular CASE tool suite

- EA is an object oriented tool supporting full life-cycle 
development

- Enterprise Architect is a flexible, complete, and powerful UML 
modeling tool

- EA facilitates the system development, project management, 
and business analysis process



16

Code Generation Toolkits

There are a variety of open source projects that read 
the meta model format (XMI) of a model and 
generate the code including logic using template 
languages.  Example projects include:

Eclipse 

MDA Beans

JET / FML

Other Open Source Modules



17

Interactive Development Environments (IDEs) 

There are a varieties of IDEs available to assist in 
the software development

Eclipse (www.eclipse.org) is a popular universal tool 
framework that can be leveraged as an IDE for 
development environment
Eclipse facilitates a plug-in development environment 
(http://eclipse.org/pde/index.html)

XML Buddy

JET / EMF

JSP editor



18

Case Study - caBIO

Analysis

Design

Implementation 



19

Analysis

Use Case Document



20

Creating Use Case Diagram in Enterprise Architect

Use case diagram



21

caBIO Gene Class



22

Connecting CDE (Class) to EVS

EVS Concept Unique ID

EVS CUI Value



23

Gene Class



24

caBIO Object Model



25

Implementation

Code generation using templates
Domain objects in templates
Data model in templates

Implement middleware specific managers



26

Code Generation



Q & A

http://ncicb.nci.nih.gov/core/caBIO


	Introduction to Unified Modeling Language (UML)
	Agenda
	Introduction
	What is UML?
	Benefits of UML
	More Benefits…
	UML Artifacts
	Use Cases
	Class Diagrams
	Class Diagrams - continued…
	Class Diagrams - continued…
	Sequence Diagrams
	Component Diagrams
	Tools
	Design Tools
	Code Generation Toolkits
	Interactive Development Environments (IDEs)
	Case Study - caBIO
	Analysis
	Creating Use Case Diagram in Enterprise Architect
	caBIO Gene Class
	Connecting CDE (Class) to EVS
	Gene Class
	caBIO Object Model
	Implementation
	Code Generation
	Q & A

